Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Med Food ; 27(3): 231-241, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502788

RESUMO

Various neurotransmitters are involved in regulating stress systems. In this study, we investigated the effects of gamma-aminobutyric acid-rich rice bran extract (GRBe) in mice stressed by forced swimming and tail suspension tests. Four weeks of oral administration of GRBe (500-2000 mg/kg) reduced the levels of dopamine and corticosterone in the blood and brain while increasing serotonin levels. GRBe was involved not only in stress but also in regulating sleep and obesity-related genes. Modern society experiences diverse and tense lives because of urbanization and informatization, which cause excessive stress due to complicated interpersonal relationships, heavy work burden, and fatigue from the organized society. High levels of stress cause psychological instability and disrupt the balance in the autonomic nervous system, which maintains the body's equilibrium, resulting in cardiovascular and cerebrovascular diseases, hormonal imbalances, and sleep disorders. Therefore, our results suggest that GRBe is a useful substance that can relieve tension by ultimately influencing a depressive-like state by lowering the levels of neuronal substances, hormones, and cytokines involved in stress and sleep disorders.


Assuntos
Produtos Biológicos , Oryza , Transtornos do Sono-Vigília , Camundongos , Animais , Depressão/tratamento farmacológico , Natação , Ácido gama-Aminobutírico , Modelos Animais de Doenças , Estresse Psicológico/tratamento farmacológico
2.
Food Chem Toxicol ; 186: 114589, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467298

RESUMO

Tropane alkaloids (TA) are natural toxins found in certain plants, including cereals, of which atropine and scopolamine are the main species of concern due to their acute toxicity. This study aimed to determine the occurrence of TA in cereal foods and assess the potential health risks associated with their consumption in Korea. TA levels were analyzed in 80 raw and 71 processed cereal samples, which were distributed throughout Korea in 2021, using ultra-performance liquid chromatography-tandem mass spectrometry. At least one of the six TA species, namely atropine, scopolamine, pseudotropine, tropinone, scopine, and 6-hydroxytropinone, was detected in 10 out of the 151 samples at levels ranging from 0.12 to 88.10 µg kg-1. Dietary exposure (mean, 0.23 ng kg-1 bw day-1) to atropine and scopolamine in the Korean population was estimated to be low across all age groups. This is despite considering worst-case scenarios using the total concentrations of atropine and scopolamine in a millet sample, both of which were detected, and 95th percentile consumption for consumers of millet only. Both the hazard index and margin of exposure methods indicated that the current levels of TA exposure from millet consumption were unlikely to pose significant health risks to the Korean population.


Assuntos
Grão Comestível , Tropanos , Atropina , Grão Comestível/química , República da Coreia , Medição de Risco , Escopolamina/toxicidade , Tropanos/análise , Tropanos/química , Alcaloides/análise , Alcaloides/química
3.
Microbiol Spectr ; : e0276023, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319091

RESUMO

Bacterial contamination of blood products poses a significant risk in transfusion medicine. Platelets are particularly vulnerable to bacterial growth because they must be stored at room temperature with constant agitation for >5 days. The limitations of bacterial detection using conventional methods, such as blood cultures and lateral flow assays, include the long detection times, low sensitivity, and the requirement for substantial volumes of blood components. To address these limitations, we assessed the performance of a bacterial enrichment technique using antibiotic-conjugated magnetic nanobeads (AcMNBs) and real-time PCR for the detection of bacterial contamination in plasma. AcMNBs successfully captured >80% of four bacterial strains, including Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Klebsiella pneumoniae, in both plasma and phosphate-buffered saline. After 24-h incubation with bacterial enrichment, S. aureus and B. cereus were each detected at 101 CFU/mL in all trials (5/5), E. coli at 101 CFU/mL in 1/5 trials, and K. pneumoniae at 10² CFU/mL in 4/5 trials. Additionally, without incubation, the improvement was also achieved in samples with bacterial enrichment, S. aureus at 10² CFU/mL and B. cereus at 101 CFU/mL in 1/5 trials each, E. coli at 10³ CFU/mL in 3/5 trials, and K. pneumoniae at 10¹ CFU/mL in 2/5 trials. Overall, the findings from this study strongly support the superiority of bacterial enrichment in detecting low-level bacterial contamination in plasma when employing AcMNBs and PCR.IMPORTANCEThe study presents a breakthrough approach to detect bacterial contamination in plasma, a critical concern in transfusion medicine. Traditional methods, such as blood cultures and lateral flow assays, are hampered by slow detection times, low sensitivity, and the need for large blood sample volumes. Our research introduces a novel technique using antibiotic-conjugated magnetic nanobeads combined with real-time PCR, enhancing the detection of bacteria in blood products, especially platelets. This method has shown exceptional efficiency in identifying even low levels of four different species of bacteria in plasma. The ability to detect bacterial contamination rapidly and accurately is vital for ensuring the safety of blood transfusions and can significantly reduce the risk of infections transmitted through blood products. This advancement is a pivotal step in improving patient outcomes and elevating the standards of care in transfusion medicine.

4.
J Control Release ; 366: 410-424, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171472

RESUMO

The therapeutic efficacy of anticancer drugs loaded in liposomes composed of rigid phosphatidylcholine (PC) is hindered by the limited release of these drugs at the tumor site, which in turn hampers delivery of the drug to its intracellular target. In an attempt to improve the therapeutic efficacy of liposomal anticancer drugs, we here explored the use of empty liposomes as "trigger" vehicles to induce drug release from drug-loaded liposomes through liposome-liposome interactions. Empty liposomes containing PC in which omega-3 fatty acids comprised both fatty acid strands (Omega-L) showed a triggering effect on drug release from doxorubicin (DOX)-loaded liposomes (Caelyx). The effectiveness of this triggered-release effect was dependent on the Omega-L composition as well as the mixing ratio of Omega-L to Caelyx. Cryo-TEM and differential calorimetry studies revealed that the Omega-L effect was associated with liposome-liposome interactions that led to loosened membrane packing and increased fluidity of Caelyx. In cultured cells, the intracellular/intranuclear DOX uptake and anticancer efficacy of Caelyx was greatly improved by Omega-L pre-mixing. Intravenous injection of rats with Caelyx, premixed with Omega-L, decreased the area under the plasma concentration-time curve from time zero to time infinity and increased clearance without significantly changing the mean residence time or terminal half-life of DOX compared with Caelyx alone. Ex vivo bioimaging showed that DOX fluorescence in tumors, but not in other organs, was significantly increased by Omega-L premixing. In the mouse xenograft model, premixing of Omega-L with Caelyx suppressed tumor growth 2.5-fold compared with Caelyx. Collectively, the data provide preliminary evidence that the Omega-L-triggered drug release that occurs before and after dosing, particularly at tumor site, improved the therapeutic efficacy of Caelyx. The simple approach described here could enhance the therapeutic value of Caelyx and other anticancer drug-loaded liposomes.


Assuntos
Antineoplásicos , Doxorrubicina/análogos & derivados , Ácidos Graxos Ômega-3 , Neoplasias , Humanos , Camundongos , Ratos , Animais , Lipossomos/química , Ácidos Graxos Ômega-3/uso terapêutico , Liberação Controlada de Fármacos , Fosfatidilcolinas/química , Modelos Animais de Doenças , Polietilenoglicóis
5.
Biomed Pharmacother ; 171: 116124, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198957

RESUMO

Lung cancer represents a significant global health concern and stands as the leading cause of cancer-related mortality worldwide. The identification of specific genomic alterations such as EGFR and KRAS in lung cancer has paved the way for the development of targeted therapies. While targeted therapies for lung cancer exhibiting EGFR, MET and ALK mutations have been well-established, the options for RET mutations remain limited. Importantly, RET mutations have been found to be mutually exclusive from other genomic mutations and to be related with high incidences of brain metastasis. Given these facts, it is imperative to explore the development of RET-targeting therapies and to elucidate the mechanisms underlying metastasis in RET-expressing lung cancer cells. In this study, we investigated PLM-101, a novel dual-target inhibitor of RET/YES1, which exhibits notable anti-cancer activities against CCDC6-RET-positive cancer cells and anti-metastatic effects against YES1-positive cancer cells. Our findings shed light on the significance of the YES1-Cortactin-actin remodeling pathway in the metastasis of lung cancer cells, establishing YES1 as a promising target for suppression of metastasis. This paper unveils a novel inhibitor that effectively targets both RET and YES1, thereby demonstrating its potential to impede the growth and metastasis of RET rearrangement lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Receptores ErbB/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-yes
6.
Cancer Res Treat ; 56(1): 219-237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37591783

RESUMO

PURPOSE: Bone metastasis (BM) adversely affects the prognosis of gastric cancer (GC). We investigated molecular features and immune microenvironment that characterize GC with BM compared to GC without BM. MATERIALS AND METHODS: Targeted DNA and whole transcriptome sequencing were performed using formalin-fixed paraffin-embedded primary tumor tissues (gastrectomy specimens) of 50 GC cases with distant metastases (14 with BM and 36 without BM). In addition, immunohistochemistry (IHC) for mucin-12 and multiplex IHC for immune cell markers were performed. RESULTS: Most GC cases with BM had a histologic type of poorly cohesive carcinoma and showed worse overall survival (OS) than GC without BM (p < 0.05). GC with BM tended to have higher mutation rates in TP53, KDR, APC, KDM5A, and RHOA than GC without BM. Chief cell-enriched genes (PGA3, PGC, and LIPF), MUC12, MFSD4A, TSPAN7, and TRIM50 were upregulated in GC with BM compared to GC without BM, which was correlated with poor OS (p < 0.05). However, the expression of SERPINA6, SLC30A2, PMAIP1, and ITIH2 were downregulated in GC with BM. GC with BM was associated with PIK3/AKT/mTOR pathway activation, whereas GC without BM showed the opposite effect. The densities of helper, cytotoxic, and regulatory T cells did not differ between the two groups, whereas the densities of macrophages were lower in GC with BM (p < 0.05). CONCLUSION: GC with BM had different gene mutation and expression profiles than GC without BM, and had more genetic alterations associated with a poor prognosis.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Perfilação da Expressão Gênica , Prognóstico , Transcriptoma , Genômica , Microambiente Tumoral , Proteína 2 de Ligação ao Retinoblastoma/genética
7.
Front Cell Infect Microbiol ; 13: 1257816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780855

RESUMO

Introduction: Recent studies have proposed several plausible mechanisms supporting the association between periodontal disease and systemic disease. However, characterizing the microbial communities in individuals with periodontal disease before onset of other diseases is an important first step in determining how the altered microbial state contributes to disease progression. This study established microbiome profiles for five body habitats of carefully selected, otherwise healthy individuals with periodontal disease. Methods: Blood, oral (buccal mucosa, dental plaque, and saliva), and stool samples were collected from ten healthy subjects with periodontal disease. Using 16S rRNA metagenomics, the taxonomic and functional compositions of microbiomes were investigated. Results: The most predominant phylum in blood and stool was Bacillota. Pseudomonadota accounted for the largest proportion of microbes in the buccal mucosa and saliva, whereas Bacteroidota were the most prevalent in dental plaque. Differential abundance analysis revealed that 12 phyla and 139 genera were differentially abundant between body habitats. Comparison of alpha diversity showed that the blood microbiome has the most diverse community close to neither oral nor stool microbiomes. We also predicted the functional configurations of the microbiome in otherwise healthy subjects with periodontal disease. Principal coordinate analysis based on functional abundance revealed distinct clustering of the microbial communities between different body habitats, as also observed for taxonomic abundance. In addition, 13 functional pathways, including lipopolysaccharide biosynthesis, glutathione metabolism, and proteasome, showed differential expression between habitats. Discussion: Our results offer insight into the effects of the microbiome on systemic health and disease in people with periodontal disease.


Assuntos
Placa Dentária , Microbiota , Doenças Periodontais , Humanos , RNA Ribossômico 16S/genética , Microbiota/genética , Metagenoma
8.
Int. microbiol ; 26(3): 563-577, Ene-Agos, 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-223982

RESUMO

Background: Concerns regarding antimicrobial resistance (AMR) have resulted in the World Health Organization (WHO) designating so-called global priority pathogens (GPPs). However, little discussion has focused on the diagnosis of GPPs. To enable the simultaneous identification of pathogens and AMR, we developed a modular real-time nucleic acid amplification test (MRT-NAAT). Methods: Sequence-specific primers for each modular unit for MRT-NAAT pathogen identification and AMR sets were designed. The composition of the reaction mixture and the real-time PCR program were unified irrespective of primer type so to give MRT-NAAT modularity. Standard strains and clinical isolates were used to evaluate the performance of MRT-NAAT by real-time PCR and melting curve analysis. Probit analysis for the MRT-NAAT pathogen identification set was used to assess the limit of detection (LoD). Results: The MRT-NAAT pathogen identification set was made up of 15 modular units 109–199 bp in product size and with a Tms of 75.5–87.5 °C. The LoD was < 15.548 fg/μL, and nine modular units successfully detected the target pathogens. The MRT-NAAT AMR set included 24 modular units 65–785 bp in product size with a Tms of 75.5–87.5 °C; it showed high performance for detecting GPP target genes and variants. Conclusions; MRT-NAAT enables pathogen identification and AMR gene detection and is time-effective. By unifying the reaction settings of each modular unit, the modularity where combinations of primers can be used according to need could be achieved. This would greatly help in reflecting the researcher’s need and the AMR status of a certain region while successfully detecting pathogens and AMR genes.(AU)


Assuntos
Humanos , Técnicas e Procedimentos Diagnósticos , Anti-Infecciosos , Noxas , Resistência a Medicamentos , Microbiologia , Técnicas Microbiológicas
9.
Biomed Pharmacother ; 165: 115066, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392657

RESUMO

Acute myeloid leukemia (AML) is a prevalent form of leukemia in adults. As its survival rate is low, there is an urgent need for new therapeutic options. In AML, FMS-like tyrosine kinase 3 (FLT3) mutations are common and have negative outcomes. However, current FLT3-targeting agents, Midostaurin and Gilteritinib, face two significant issues, specifically the emergence of acquired resistance and drug-related adverse events leading to treatment failure. Rearranged during transfection (RET), meanwhile, is a proto-oncogene linked to various types of cancer, but its role in AML has been limited. A previous study showed that activation of RET kinase enhances FLT3 protein stability, leading to the promotion of AML cell proliferation. However, no drugs are currently available that target both FLT3 and RET. This study introduces PLM-101, a new therapeutic option derived from the traditional Chinese medicine indigo naturalis with potent in vitro and in vivo anti-leukemic activities. PLM-101 potently inhibits FLT3 kinase and induces its autophagic degradation via RET inhibition, providing a superior mechanism to that of FLT3 single-targeting agents. Single- and repeated-dose toxicity tests conducted in the present study showed no significant drug-related adverse effects. This study is the first to present a new FLT3/RET dual-targeting inhibitor, PLM-101, that shows potent anti-leukemic activity and fewer adverse effects. PLM-101, therefore, should be considered for use as a potential therapeutic agent for AML.


Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Adulto , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Leucemia Mieloide Aguda/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Mutação , Proteínas Proto-Oncogênicas c-ret/genética
10.
Sci Rep ; 13(1): 10086, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344534

RESUMO

The exploration of oral microbiome has been increasing due to its relatedness with various systemic diseases, but standardization of saliva sampling for microbiome analysis has not been established, contributing to the lack of data comparability. Here, we evaluated the factors that influence the microbiome data. Saliva samples were collected by the two collection methods (passive drooling and mouthwash) using three saliva-preservation methods (OMNIgene, DNA/RNA shield, and simple collection). A total of 18 samples were sequenced by both Illumina short-read and Nanopore long-read next-generation sequencing (NGS). The component of the oral microbiome in each sample was compared with alpha and beta diversity and the taxonomic abundances, to find out the effects of factors on oral microbiome data. The alpha diversity indices of the mouthwash sample were significantly higher than that of the drooling group with both short-read and long-read NGS, while no significant differences in microbial diversities were found between the three saliva-preservation methods. Our study shows mouthwash and simple collection are not inferior to other sample collection and saliva-preservation methods, respectively. This result is promising since the convenience and cost-effectiveness of mouthwash and simple collection can simplify the saliva sample preparation, which would greatly help clinical operators and lab workers.


Assuntos
Microbiota , Sialorreia , Humanos , Saliva/química , Antissépticos Bucais , DNA Bacteriano/genética , Bactérias/genética , RNA Ribossômico 16S/genética , Microbiota/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
11.
Food Sci Biotechnol ; 32(6): 813-822, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37041812

RESUMO

Chestnut inner shell (CIS) was fermented at 30 °C for 12 day using Monascus kaoliang, either in solid or submerged state, and alcohol extracts (70% ethanol) of the fermented CIS were examined for their antioxidant (total phenol content and diphenylpicrylhydrazyl radical scavenging activity) and in vitro cosmeceutical activities (tyrosinase and elastase inhibitory activities). Both activities were significantly increased by the M. kaoliang-fermentation, more apparently by submerged fermentation (SMF) than by solid-state fermentation (SSF). The cosmeceutical activity reached its maximum value on the 3rd day of fermentation. The residual amounts of phenolic acids and catechins in the CIS extracts were increased by the fermentation, up to 395.0 and 344.3 µg/g, respectively. More phenolic acids were produced by SMF than SSF, whereas more catechins were produced by SSF than SMF. Therefore, SMF using M. kaoliang was an efficient process for the utilization of CIS as a source of cosmeceuticals.

12.
Int Microbiol ; 26(3): 563-577, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36646920

RESUMO

BACKGROUND: Concerns regarding antimicrobial resistance (AMR) have resulted in the World Health Organization (WHO) designating so-called global priority pathogens (GPPs). However, little discussion has focused on the diagnosis of GPPs. To enable the simultaneous identification of pathogens and AMR, we developed a modular real-time nucleic acid amplification test (MRT-NAAT). METHODS: Sequence-specific primers for each modular unit for MRT-NAAT pathogen identification and AMR sets were designed. The composition of the reaction mixture and the real-time PCR program were unified irrespective of primer type so to give MRT-NAAT modularity. Standard strains and clinical isolates were used to evaluate the performance of MRT-NAAT by real-time PCR and melting curve analysis. Probit analysis for the MRT-NAAT pathogen identification set was used to assess the limit of detection (LoD). RESULTS: The MRT-NAAT pathogen identification set was made up of 15 modular units 109-199 bp in product size and with a Tms of 75.5-87.5 °C. The LoD was < 15.548 fg/µL, and nine modular units successfully detected the target pathogens. The MRT-NAAT AMR set included 24 modular units 65-785 bp in product size with a Tms of 75.5-87.5 °C; it showed high performance for detecting GPP target genes and variants. CONCLUSIONS: MRT-NAAT enables pathogen identification and AMR gene detection and is time-effective. By unifying the reaction settings of each modular unit, the modularity where combinations of primers can be used according to need could be achieved. This would greatly help in reflecting the researcher's need and the AMR status of a certain region while successfully detecting pathogens and AMR genes.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Organização Mundial da Saúde , Testes Diagnósticos de Rotina
13.
PLoS One ; 17(6): e0269481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657818

RESUMO

AIMS: This study established blood group analysis methods using whole-genome sequencing (WGS) data and conducted blood group analyses to determine the domestic allele frequency using public data from the Korean whole sequence analysis of the Korean Reference Genome Project conducted by the Korea Disease Control and Prevention Agency (KDCA). MATERIALS AND METHODS: We analyzed the differences between the human reference sequences (hg19) and the conventional reference cDNA sequences of blood group genes using the Clustal Omega website, and established blood group analysis methods using WGS data for 41 genes, including 39 blood group genes involved in 36 blood group antigens, as well as the GATA1 and KLF1 genes, which are erythrocyte-specific transcription factor genes. Using CLC genomics Workbench 11.0 (Qiagen, Aarhus, Denmark), variant analysis was performed on these 41 genes in 250 Korean WGS data sets, and each blood group's genotype was predicted. The frequencies for major alleles were also investigated and compared with data from the Korean rare blood program (KRBP) and the Erythrogene database (East Asian and all races). RESULTS: Among the 41 blood group-related genes, hg19 showed variants in the following genes compared to the conventional reference cDNA: GYPA, RHD, RHCE, FUT3, ACKR1, SLC14A1, ART4, CR1, and GCNT2. Among 250 WGS data sets from the Korean Reference Genome Project, 70.6 variants were analyzed in 205 samples; 45 data samples were excluded due to having no variants. In particular, the FUT3, GNCT2, B3GALNT1, CR1, and ACHE genes contained numerous variants, with averages of 21.1, 13.9, 13.4, 9.6, and 7.0, respectively. Except for some blood groups, such as ABO and Lewis, for which it was difficult to predict the alleles using only WGS data, most alleles were successfully predicted in most blood groups. A comparison of allele frequencies showed no significant differences compared to the KRBP data, but there were differences compared to the Erythrogene data for the Lutheran, Kell, Duffy, Yt, Scianna, Landsteiner-Wiener, and Cromer blood group systems. Numerous minor blood group systems that were not available in the KRBP data were also included in this study. CONCLUSIONS: We successfully established and performed blood group analysis using Korean public WGS data. It is expected that blood group analysis using WGS data will be performed more frequently in the future and will contribute to domestic data on blood group allele frequency and eventually the supply of safe blood products.


Assuntos
Antígenos de Grupos Sanguíneos , Alelos , Antígenos de Grupos Sanguíneos/genética , DNA Complementar , Frequência do Gene , Genótipo , Humanos , Sequenciamento Completo do Genoma/métodos
14.
Sci Rep ; 12(1): 9151, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650226

RESUMO

Bacterial contamination of blood products is a major problem in transfusion medicine, in terms of both morbidity and mortality. Platelets (PLTs) are stored at room temperature (under constant agitation) for more than 5 days, and bacteria can thus grow significantly from a low level to high titers. However, conventional methods like blood culture and lateral flow assay have disadvantages such as long detection time, low sensitivity, and the need for a large volume of blood components. We used real-time polymerase chain reaction (PCR) assays with antibiotic-conjugated magnetic nanobeads (MNBs) to detect enriched Gram-positive and -negative bacteria. The MNBs were coated with polyethylene glycol (PEG) to prevent aggregation by blood components. Over 80% of all bacteria were captured by the MNBs, and the levels of detection were 101 colony forming unit [CFU]/mL and 102 CFU/mL for Gram-positive and -negative bacteria, respectively. The detection time is < 3 h using only small volumes of blood components. Thus, compared to conventional methods, real-time PCR using MNBs allows for rapid detection with high sensitivity using only a small volume of blood components.


Assuntos
Bactérias , Contaminação de Medicamentos , Bactérias/genética , Plaquetas/microbiologia , Fenômenos Magnéticos , Plasma
15.
Front Cell Infect Microbiol ; 12: 857801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463637

RESUMO

Vancomycin-resistant enterococci (VRE) are nosocomial pathogens with genetic plasticity and widespread antimicrobial resistance (AMR). To prevent the spread of VRE in the hospital setting, molecular epidemiological approaches such as pulsed-field gel electrophoresis and multilocus sequence typing have been implemented for pathogen outbreak surveillance. However, due to the insufficient discriminatory power of these methods, whole-genome sequencing (WGS), which enables high-resolution analysis of entire genomic sequences, is being used increasingly. Herein, we performed WGS of VRE using both short-read next-generation sequencing (SR-NGS) and long-read next-generation sequencing (LR-NGS). Since standardized workflows and pipelines for WGS-based bacterial epidemiology are lacking, we established three-step pipelines for SR- and LR-NGS, as a standardized WGS-based approach for strain typing and AMR profiling. For strain typing, we analyzed single-nucleotide polymorphisms (SNPs) of VRE isolates and constructed SNP-based maximum-likelihood phylogenies. The phylogenetic trees constructed using short and long reads showed good correspondence. Still, SR-NGS exhibited higher sensitivity for detecting nucleotide substitutions of bacterial sequences. During AMR profiling, we examined AMR genes and resistance-conferring mutations. We also assessed the concordance between genotypic and phenotypic resistance, which was generally better for LR-NGS than SR-NGS. Further validation of our pipelines based on outbreak cases is necessary to ensure the overall performance of pipelines.


Assuntos
Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Humanos , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Filogenia , Enterococos Resistentes à Vancomicina/genética , Polimorfismo de Nucleotídeo Único
16.
Food Sci Biotechnol ; 31(4): 443-450, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35464244

RESUMO

Chestnut inner shell was fermented in solid state with Aspergillus sojae, and then extracted using ethanol (95%) to analyze its cosmeceutical activity and phenolic composition. The fermentation significantly increased the antioxidant activity, and in vitro cosmeceutical activities. The ethanol extract showed the higher activities than ethyl acetate and water extracts. DPPH radical scavenging activity of the alcoholic extract was 80.53%, and tyrosinase and elastase inhibition activities were 101.01%, and 76.73%, respectively, after 10 days of fermentation. Kojic acid, a secondary metabolite of A. sojae was produced by the fermentation as a major bioactive component. Gallic acid, ellagic acid, and coumaric acid appeared the major phenolic acids in the alcoholic extract from fermented chestnut inner shell. The alcoholic extract from chestnut inner shell fermented by A. sojae may be used as an effective and bioactive cosmeceutical. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01044-9.

17.
Front Cell Infect Microbiol ; 12: 819829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321315

RESUMO

Zika virus (ZIKV) emerged as a serious public health problem since the first major outbreak in 2007. Current ZIKV diagnostic methods can successfully identify known ZIKV but are impossible to track the origin of viruses and pathogens other than known ZIKV strains. We planned to determine the ability of Whole Genome Sequencing (WGS) in clinical epidemiology by evaluating whether it can successfully detect the origin of ZIKV in a suspected case of laboratory-acquired infection (LAI). ZIKV found in the patient sample was sequenced with nanopore sequencing technology, followed by the production of the phylogenetic tree, based on the alignment of 38 known ZIKV strains with the consensus sequence. The closest viral strain with the consensus sequence was the strain used in the laboratory, with a percent identity of 99.27%. We think WGS showed its time-effectiveness and ability to detect the difference between strains to the level of a single base. Additionally, to determine the global number of LAIs, a literature review of articles published in the last 10 years was performed, and 53 reports of 338 LAIs were found. The lack of a universal reporting system was worrisome, as in the majority of cases (81.1%), the exposure route was unknown.


Assuntos
Nanoporos , Vacinas , Infecção por Zika virus , Zika virus , Humanos , Filogenia , Sequenciamento Completo do Genoma , Zika virus/genética , Infecção por Zika virus/epidemiologia
18.
Diagnostics (Basel) ; 11(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063775

RESUMO

Serological weak D is a reaction of 2+ or less to anti-D reagent and includes weak D and partial D phenotypes. Although identifying the RhD subtype is important for transfusion safety, serological tests are insufficient for defining the RhD subtype, and molecular tests are needed. To analyze the molecular characteristics of D variants in Koreans to facilitate the formulation of individualized transfusion strategies, molecular tests such as RhD genotyping using real-time polymerase chain reaction (PCR) and partial-D and/or weak-D sequence-specific amplification (SSP) were performed on 105 Korean Rare Blood Program (KRBP) patients exhibiting serological weak D. In total, 58 out of 68 serologically determined weak D KRBP patients were typed as having weak D or partial D phenotypes via RhD genotyping. In detail, eight (13.8%) were typed as partial DVa or DBS, nine (15.5%) as weak D type 15, and four others (6.8%) as partial DVI, partial DVII, weak D type 2, or weak D type 41 or 45, whereas the rest (n = 37, 63.8%) was typed as having either weak D or partial D. This suggests that serological weak D Koreans who require transfusion should be treated as D-negative.

19.
Food Sci Biotechnol ; 29(11): 1563-1571, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33088605

RESUMO

Moringa oleifera leaf (ML) is rich in vitamins and minerals, specially abundant calcium, therefore it is widely used as a calcium supplement for food. This study aimed to investigate the antioxidant activity and calcium bioaccessibility of M. oleifera leaf hydrolysate (MLH) as a calcium supplement for kimchi. MLH was prepared under three different proteases, two different protease contents, and three different incubation times. Total phenol content (TPC), total flavonoid content (TFC), and antioxidant activities were investigated. Cellular activity and calcium bioaccessibility were also investigated. The highest calcium level of MLH was observed in 3% Protamex treatment for 4 h. TPC, TFC, and antioxidant activities of MLH in Protamex and Alcalase treatments were higher than those in Flavourzyme treatment (p < 0.05). Moreover, high cell viability and alkaline phosphatase activity were also observed in C2C12 cells. Kimchi containing MLH showed high calcium accessibility compared to kimchi alone. Taken together, the application of MLH could have potential as a calcium supplement for kimchi production.

20.
Cancers (Basel) ; 12(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882923

RESUMO

Glycolysis is known as the main pathway for ATP production in cancer cells. However, in cancer cells, glucose deprivation for 24 h does not reduce ATP levels, whereas it does suppress lactate production. In this study, metabolic pathways were blocked to identify the main pathway of ATP production in pancreatic ductal adenocarcinoma (PDAC). Blocking fatty acid oxidation (FAO) decreased ATP production by 40% in cancer cells with no effect on normal cells. The effects of calorie balanced high- or low-fat diets were tested to determine whether cancer growth is modulated by fatty acids instead of calories. A low-fat diet caused a 70% decrease in pancreatic preneoplastic lesions compared with the control, whereas a high-fat diet caused a two-fold increase in preneoplastic lesions accompanied with increase of ATP production in the Kras (G12D)/Pdx1-cre PDAC model. The present results suggest that ATP production in cancer cells is dependent on FAO rather than on glycolysis, which can be a therapeutic approach by targeting cancer energy metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...